United States Naval Academy Mechanical Engineering Department

EM477 Computer-Aided Design

Catalog Description: EM477 Computer-Aided Design **Credit:** 3 (2-2-3) A design course using computer aided engineering software as a tool in engineering design. Solid modeling and finite element analysis are used to generate engineering solutions based on performance related objectives.

Prerequisites: EM371 Introduction to Design

Textbooks: None. Lecture Notes.

Course Director: Assoc. Prof. J. A. Burkhardt

Objectives¹:

- 1. To understand the use of computers and software as tools to solve engineering problems in a creative and efficient manner (a,b,c).
- 2. To improve the visualization and communication skills of the student (d).
- 3. To select Capstone Design teams, develop a project and complete all necessary paper designs required for the Capstone Design Course in the Spring. (b,d).

Course Content:

No.	Topic or Subtopic						hrs.
1.	Solid Modeling						6
2.	Engineering Drawings and Dimensioning						2
2.	Finite element analysis of trusses and frames						4
2.	Finite element analysis of elastic solids						6
3.	Heat transfer analysis of solids and fins						4
5.	Project Management						2
El4'							
Evaluation:							
1. Q	uizzes	<u>X</u>	Yes		No		
2. H	omework	<u>X</u>	Yes		No		
3. E	xams		Yes	<u>X</u>	No		
4. L	aboratory Reports	<u>X</u>	Yes		No		
5. O	ral Presentations	<u>X</u>	Yes		No		
6. D	esign Reports/Notebooks	<u>X</u>	Yes		No		
7. P	rototypes/Demonstrations	<u>X</u>	Yes		No		
8. P	rojects	<u>X</u>	Yes		No		
9. A	ny other evaluation tools used		Yes	_ <u>X</u> _	_No		

Acquired Abilities²:

1.1 Students will demonstrate the ability to analyze the mechanical and thermal behavior of engineering systems. (4,6,8).

EM477 Computer-Aided Design

- 1.2 Students will demonstrate the ability to use computer aided engineering software for the design of engineering systems (4,6,8).
- 1.3 Students will demonstrate a understanding of basic finite element principles (2).
- 1.4 Students will manufacture physical prototypes of their designs to evaluate the performance of both the prototypes and the virtual prototypes used for their design (7).
- 2.1 Students will demonstrate an understanding of solid modeling principles (1,4,8).
- 2.2 Students will demonstrate the ability to use solid modeling packages to build virtual prototypes of engineering systems (4,8).
- 2.3 Students will prepare written laboratory reports, formal design reports and informal status reports to communicate and present technical information (6).
- 3.1 Students will select a design team and develop a project for the Spring Capstone Design Course (2).
- 3.2 Students will produce paper designs for their Capstone Design Project (2).
- 3.3 Students will prepare and submit a formal proposal and presentation and final report for the Capstone Design Project (5,6).

Date of Latest Revision: 11 December 2003

¹ Letters in parenthesis refer to the <u>Program Objectives</u> of the <u>Mechanical Engineering Program</u>.

² Section numbering refers to Course Objectives. Numbers in parentheses refer to the evaluation methods used to assess student performance.